Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Framework to Quantify Different Types of Uncertainty in Deep Neural Networks for Image Classification (2011.08712v5)

Published 17 Nov 2020 in cs.CV, cs.LG, cs.NE, and eess.IV

Abstract: Quantifying uncertainty in a model's predictions is important as it enables the safety of an AI system to be increased by acting on the model's output in an informed manner. This is crucial for applications where the cost of an error is high, such as in autonomous vehicle control, medical image analysis, financial estimations or legal fields. Deep Neural Networks are powerful predictors that have recently achieved state-of-the-art performance on a wide spectrum of tasks. Quantifying predictive uncertainty in DNNs is a challenging and yet on-going problem. In this paper we propose a complete framework to capture and quantify three known types of uncertainty in DNNs for the task of image classification. This framework includes an ensemble of CNNs for model uncertainty, a supervised reconstruction auto-encoder to capture distributional uncertainty and using the output of activation functions in the last layer of the network, to capture data uncertainty. Finally we demonstrate the efficiency of our method on popular image datasets for classification.

Summary

We haven't generated a summary for this paper yet.