Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Simple Framework to Quantify Different Types of Uncertainty in Deep Neural Networks for Image Classification

Published 17 Nov 2020 in cs.CV, cs.LG, cs.NE, and eess.IV | (2011.08712v5)

Abstract: Quantifying uncertainty in a model's predictions is important as it enables the safety of an AI system to be increased by acting on the model's output in an informed manner. This is crucial for applications where the cost of an error is high, such as in autonomous vehicle control, medical image analysis, financial estimations or legal fields. Deep Neural Networks are powerful predictors that have recently achieved state-of-the-art performance on a wide spectrum of tasks. Quantifying predictive uncertainty in DNNs is a challenging and yet on-going problem. In this paper we propose a complete framework to capture and quantify three known types of uncertainty in DNNs for the task of image classification. This framework includes an ensemble of CNNs for model uncertainty, a supervised reconstruction auto-encoder to capture distributional uncertainty and using the output of activation functions in the last layer of the network, to capture data uncertainty. Finally we demonstrate the efficiency of our method on popular image datasets for classification.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.