Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning of Graph Neural Networks for Service Function Chaining (2011.08406v1)

Published 17 Nov 2020 in cs.AI, cs.LG, and cs.NI

Abstract: In the management of computer network systems, the service function chaining (SFC) modules play an important role by generating efficient paths for network traffic through physical servers with virtualized network functions (VNF). To provide the highest quality of services, the SFC module should generate a valid path quickly even in various network topology situations including dynamic VNF resources, various requests, and changes of topologies. The previous supervised learning method demonstrated that the network features can be represented by graph neural networks (GNNs) for the SFC task. However, the performance was limited to only the fixed topology with labeled data. In this paper, we apply reinforcement learning methods for training models on various network topologies with unlabeled data. In the experiments, compared to the previous supervised learning method, the proposed methods demonstrated remarkable flexibility in new topologies without re-designing and re-training, while preserving a similar level of performance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.