Papers
Topics
Authors
Recent
2000 character limit reached

Descent and vanishing in chromatic algebraic $K$-theory via group actions

Published 16 Nov 2020 in math.KT and math.AT | (2011.08233v2)

Abstract: We prove some $K$-theoretic descent results for finite group actions on stable $\infty$-categories, including the $p$-group case of the Galois descent conjecture of Ausoni-Rognes. We also prove vanishing results in accordance with Ausoni-Rognes's redshift philosophy: in particular, we show that if $R$ is an $\mathbb{E}\infty$-ring spectrum with $L{T(n)}R=0$, then $L_{T(n+1)}K(R)=0$. Our key observation is that descent and vanishing are logically interrelated, permitting to establish them simultaneously by induction on the height.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.