Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Random Walks on Graphs: Mixing Few to Cover Many (2011.07893v3)

Published 16 Nov 2020 in cs.DM, math.CO, and math.PR

Abstract: Random walks on graphs are an essential primitive for many randomised algorithms and stochastic processes. It is natural to ask how much can be gained by running $k$ multiple random walks independently and in parallel. Although the cover time of multiple walks has been investigated for many natural networks, the problem of finding a general characterisation of multiple cover times for worst-case start vertices (posed by Alon, Avin, Kouck\'y, Kozma, Lotker, and Tuttle~in 2008) remains an open problem. First, we improve and tighten various bounds on the stationary cover time when $k$ random walks start from vertices sampled from the stationary distribution. For example, we prove an unconditional lower bound of $\Omega((n/k) \log n)$ on the stationary cover time, holding for any $n$-vertex graph $G$ and any $1 \leq k =o(n\log n )$. Secondly, we establish the stationary cover times of multiple walks on several fundamental networks up to constant factors. Thirdly, we present a framework characterising worst-case cover times in terms of stationary cover times and a novel, relaxed notion of mixing time for multiple walks called the partial mixing time. Roughly speaking, the partial mixing time only requires a specific portion of all random walks to be mixed. Using these new concepts, we can establish (or recover) the worst-case cover times for many networks including expanders, preferential attachment graphs, grids, binary trees and hypercubes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.