Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Episodic Memory with a Soft Constraint for Continual Learning (2011.07801v1)

Published 16 Nov 2020 in cs.LG and cs.AI

Abstract: Catastrophic forgetting in continual learning is a common destructive phenomenon in gradient-based neural networks that learn sequential tasks, and it is much different from forgetting in humans, who can learn and accumulate knowledge throughout their whole lives. Catastrophic forgetting is the fatal shortcoming of a large decrease in performance on previous tasks when the model is learning a novel task. To alleviate this problem, the model should have the capacity to learn new knowledge and preserve learned knowledge. We propose an average gradient episodic memory (A-GEM) with a soft constraint $\epsilon \in [0, 1]$, which is a balance factor between learning new knowledge and preserving learned knowledge; our method is called gradient episodic memory with a soft constraint $\epsilon$ ($\epsilon$-SOFT-GEM). $\epsilon$-SOFT-GEM outperforms A-GEM and several continual learning benchmarks in a single training epoch; additionally, it has state-of-the-art average accuracy and efficiency for computation and memory, like A-GEM, and provides a better trade-off between the stability of preserving learned knowledge and the plasticity of learning new knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guannan Hu (8 papers)
  2. Wu Zhang (6 papers)
  3. Hu Ding (34 papers)
  4. Wenhao Zhu (32 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.