Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wentzell-Freidlin Large Deviation Principle for the stochastic convective Brinkman-Forchheimer equations (2011.07703v1)

Published 16 Nov 2020 in math.PR

Abstract: This work addresses some asymptotic behavior of solutions to the stochastic convective Brinkman-Forchheimer (SCBF) equations perturbed by multiplicative Gaussian noise in bounded domains. Using a weak convergence approach of Budhiraja and Dupuis, we establish the Laplace principle for the strong solution to the SCBF equations in a suitable Polish space. Then, the Wentzell-Freidlin large deviation principle is derived using the well known results of Varadhan and Bryc. The large deviations for short time are also considered in this work. Furthermore, we study the exponential estimates on certain exit times associated with the solution trajectory of the SCBF equations. Using contraction principle, we study these exponential estimates of exit times from the frame of reference of Freidlin-Wentzell type large deviations principle. This work also improves several LDP results available in the literature for the tamed Navier-Stokes equations as well as Navier-Stokes equations with damping in bounded domains.

Summary

We haven't generated a summary for this paper yet.