2000 character limit reached
Separating invariants over finite fields (2011.07408v1)
Published 14 Nov 2020 in math.RT and math.AC
Abstract: We determine the minimal number of separating invariants for the invariant ring of a matrix group $G < \mathrm{GL}_n(\mathbb{F}_q)$ over the finite field $\mathbb{F}_q$. We show that this minimal number can be obtained with invariants of degree at most $|G|n(q-1)$. In the non-modular case this construction can be improved to give invariants of degree at most $n(q-1)$. As examples we study separating invariants over the field $\mathbb{F}_2$ for two important representations of the symmetric group