Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting respondent difficulty in web surveys: A machine-learning approach based on mouse movement features (2011.06916v1)

Published 5 Nov 2020 in cs.HC, cs.LG, and stat.AP

Abstract: A central goal of survey research is to collect robust and reliable data from respondents. However, despite researchers' best efforts in designing questionnaires, respondents may experience difficulty understanding questions' intent and therefore may struggle to respond appropriately. If it were possible to detect such difficulty, this knowledge could be used to inform real-time interventions through responsive questionnaire design, or to indicate and correct measurement error after the fact. Previous research in the context of web surveys has used paradata, specifically response times, to detect difficulties and to help improve user experience and data quality. However, richer data sources are now available, in the form of the movements respondents make with the mouse, as an additional and far more detailed indicator for the respondent-survey interaction. This paper uses machine learning techniques to explore the predictive value of mouse-tracking data with regard to respondents' difficulty. We use data from a survey on respondents' employment history and demographic information, in which we experimentally manipulate the difficulty of several questions. Using features derived from the cursor movements, we predict whether respondents answered the easy or difficult version of a question, using and comparing several state-of-the-art supervised learning methods. In addition, we develop a personalization method that adjusts for respondents' baseline mouse behavior and evaluate its performance. For all three manipulated survey questions, we find that including the full set of mouse movement features improved prediction performance over response-time-only models in nested cross-validation. Accounting for individual differences in mouse movements led to further improvements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Amanda Fernández-Fontelo (8 papers)
  2. Pascal J. Kieslich (2 papers)
  3. Felix Henninger (2 papers)
  4. Frauke Kreuter (25 papers)
  5. Sonja Greven (40 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.