Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak convergence of the scaled jump chain and number of mutations of the Kingman coalescent (2011.06908v3)

Published 13 Nov 2020 in math.PR

Abstract: The Kingman coalescent is a fundamental process in population genetics modelling the ancestry of a sample of individuals backwards in time. In this paper, in a large-sample-size regime, we study asymptotic properties of the coalescent under neutrality and a general finite-alleles mutation scheme, i.e. including both parent independent and parent dependent mutation. In particular, we consider a sequence of Markov chains that is related to the coalescent and consists of block-counting and mutation-counting components. We show that these components, suitably scaled, converge weakly to deterministic components and Poisson processes with varying intensities, respectively. Along the way, we develop a novel approach to generalise the convergence result from the parent independent to the parent dependent mutation setting. This approach is based on a change of measure and provides a new alternative way to address problems in the parent dependent mutation setting, in which several crucial quantities are not known explicitly.

Summary

We haven't generated a summary for this paper yet.