Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent k-Clustering for General Metrics (2011.06888v1)

Published 13 Nov 2020 in cs.DS

Abstract: Given a stream of points in a metric space, is it possible to maintain a constant approximate clustering by changing the cluster centers only a small number of times during the entire execution of the algorithm? This question received attention in recent years in the machine learning literature and, before our work, the best known algorithm performs $\widetilde{O}(k2)$ center swaps (the $\widetilde{O}(\cdot)$ notation hides polylogarithmic factors in the number of points $n$ and the aspect ratio $\Delta$ of the input instance). This is a quadratic increase compared to the offline case -- the whole stream is known in advance and one is interested in keeping a constant approximation at any point in time -- for which $\widetilde{O}(k)$ swaps are known to be sufficient and simple examples show that $\Omega(k \log(n \Delta))$ swaps are necessary. We close this gap by developing an algorithm that, perhaps surprisingly, matches the guarantees in the offline setting. Specifically, we show how to maintain a constant-factor approximation for the $k$-median problem by performing an optimal (up to polylogarithimic factors) number $\widetilde{O}(k)$ of center swaps. To obtain our result we leverage new structural properties of $k$-median clustering that may be of independent interest.

Citations (16)

Summary

We haven't generated a summary for this paper yet.