Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affinely representable lattices, stable matchings, and choice functions (2011.06763v2)

Published 13 Nov 2020 in math.CO and cs.DM

Abstract: Birkhoff's representation theorem (Birkhoff, 1937) defines a bijection between elements of a distributive lattice and the family of upper sets of an associated poset. Although not used explicitly, this result is at the backbone of the combinatorial algorithm by Irving et al. (1987) for maximizing a linear function over the set of stable matchings in Gale and Shapley's stable marriage model (Gale and Shapley, 1962). In this paper, we introduce a property of distributive lattices, which we term as affine representability, and show its role in efficiently solving linear optimization problems over the elements of a distributive lattice, as well as describing the convex hull of the characteristic vectors of the lattice elements. We apply this concept to the stable matching model with path-independent quota-filling choice functions, thus giving efficient algorithms and a compact polyhedral description for this model. To the best of our knowledge, this model generalizes all models from the literature for which similar results were known, and our paper is the first that proposes efficient algorithms for stable matchings with choice functions, beyond classical extensions of the Deferred Acceptance algorithm.

Citations (9)

Summary

We haven't generated a summary for this paper yet.