Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A non-tame and non-co-tame automorphism of the polynomial ring (2011.06311v2)

Published 12 Nov 2020 in math.AC and math.AG

Abstract: An automorphism $F$ of the polynomial ring in $n$ variables over a field of characteristic zero is said to be {\it co-tame} if the subgroup of the automorphism group of the polynomial ring generated by $F$ and affine automorphisms contains the tame subgroup. There exist many examples of such an $F$, and several sufficient conditions for co-tameness are already known. In 2015, Edo-Lewis gave the first example of a non-cotame automorphism, which is a tame automorphism of the polynomial ring in three variables. In this paper, we give the first example of a non-cotame automorphism which is not tame. We construct such an example when $n=3$ as the exponential automorphism of a locally nilpotent derivation of rank three.

Summary

We haven't generated a summary for this paper yet.