Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Interpretability Meets TLS Fingerprinting (2011.06304v2)

Published 12 Nov 2020 in cs.NI, cs.CR, and cs.LG

Abstract: Protecting users' privacy over the Internet is of great importance; however, it becomes harder and harder to maintain due to the increasing complexity of network protocols and components. Therefore, investigating and understanding how data is leaked from the information transmission platforms and protocols can lead us to a more secure environment. In this paper, we propose a framework to systematically find the most vulnerable information fields in a network protocol. To this end, focusing on the transport layer security (TLS) protocol, we perform different machine-learning-based fingerprinting attacks on the collected data from more than 70 domains (websites) to understand how and where this information leakage occurs in the TLS protocol. Then, by employing the interpretation techniques developed in the machine learning community and applying our framework, we find the most vulnerable information fields in the TLS protocol. Our findings demonstrate that the TLS handshake (which is mainly unencrypted), the TLS record length appearing in the TLS application data header, and the initialization vector (IV) field are among the most critical leaker parts in this protocol, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.