Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient List-Decoding with Constant Alphabet and List Sizes (2011.05884v2)

Published 11 Nov 2020 in cs.CC, cs.IT, and math.IT

Abstract: We present an explicit and efficient algebraic construction of capacity-achieving list decodable codes with both constant alphabet and constant list sizes. More specifically, for any $R \in (0,1)$ and $\epsilon>0$, we give an algebraic construction of an infinite family of error-correcting codes of rate $R$, over an alphabet of size $(1/\epsilon){O(1/\epsilon2)}$, that can be list decoded from a $(1-R-\epsilon)$-fraction of errors with list size at most $\exp(\mathrm{poly}(1/\epsilon))$. Moreover, the codes can be encoded in time $\mathrm{poly}(1/\epsilon, n)$, the output list is contained in a linear subspace of dimension at most $\mathrm{poly}(1/\epsilon)$, and a basis for this subspace can be found in time $\mathrm{poly}(1/\epsilon, n)$. Thus, both encoding and list decoding can be performed in fully polynomial-time $\mathrm{poly}(1/\epsilon, n)$, except for pruning the subspace and outputting the final list which takes time $\exp(\mathrm{poly}(1/\epsilon))\cdot\mathrm{poly}(n)$. Our codes are quite natural and structured. Specifically, we use algebraic-geometric (AG) codes with evaluation points restricted to a subfield, and with the message space restricted to a (carefully chosen) linear subspace. Our main observation is that the output list of AG codes with subfield evaluation points is contained in an affine shift of the image of a block-triangular-Toeplitz (BTT) matrix, and that the list size can potentially be reduced to a constant by restricting the message space to a BTT evasive subspace, which is a large subspace that intersects the image of any BTT matrix in a constant number of points. We further show how to explicitly construct such BTT evasive subspaces, based on the explicit subspace designs of Guruswami and Kopparty (Combinatorica, 2016), and composition.

Citations (14)

Summary

We haven't generated a summary for this paper yet.