Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A parabolic problem involving $p(x)$-Laplacian, a power and a singular nonlinearity (2011.05573v2)

Published 11 Nov 2020 in math.AP

Abstract: The purpose of this paper is to study nonlinear singular parabolic equations with $p(x)$- Laplacian. Precisely, we consider the following problem and discuss the existence of a non-negative weak solution. \begin{align*} \frac{\partial u}{\partial t}-\Delta_{p(x)}u&=\lambda u{q(x)-1} + u{-\delta(x)}g+ f&&\text{in}~Q_T, u&= 0&&\text{on}~\Sigma_T, u(0,\cdot)&=u_0(\cdot)&&\text{in}~\Omega\nonumber. \end{align*} Here $Q_T=\Omega\times(0,T)$, $\Sigma_T=\partial\Omega\times(0,T)$, $\Omega$ is a bounded domain in $\mathbb{R}N$ ($N\geq 2$) with Lipschitz continuous boundary $\partial\Omega$, $\lambda\in(0,\infty)$, $f\in L1(Q_T)$, $g\in L\infty(\Omega)$, $u_0\in Lr(\Omega)$ with $r\geq 2$, $\delta:\overline{\Omega}\rightarrow(0,\infty)$ is continuous, and $p,q\in C(\overline{\Omega})$ with $\underset{x\in\overline{\Omega}}{\max}~p(x)<N$, $q(\cdot)<p*(\cdot)$. The article is distinguished into two cases according to the choice of $f$ with different range of parameters $p(\cdot)$, $q(\cdot)$.

Summary

We haven't generated a summary for this paper yet.