Papers
Topics
Authors
Recent
Search
2000 character limit reached

NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for Identify Informative COVID-19 English Tweets

Published 11 Nov 2020 in cs.CL | (2011.05551v1)

Abstract: This paper presents the model submitted by the NIT_COVID-19 team for identified informative COVID-19 English tweets at WNUT-2020 Task2. This shared task addresses the problem of automatically identifying whether an English tweet related to informative (novel coronavirus) or not. These informative tweets provide information about recovered, confirmed, suspected, and death cases as well as the location or travel history of the cases. The proposed approach includes pre-processing techniques and pre-trained RoBERTa with suitable hyperparameters for English coronavirus tweet classification. The performance achieved by the proposed model for shared task WNUT 2020 Task2 is 89.14% in the F1-score metric.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.