Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Quantum Approximate Optimization Algorithm with postselection (2011.05425v1)

Published 10 Nov 2020 in quant-ph, cs.DS, and math.CO

Abstract: Combinatorial optimization is among the main applications envisioned for near-term and fault-tolerant quantum computers. In this work, we consider a well-studied quantum algorithm for combinatorial optimization: the Quantum Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on 3-regular graphs. We explore the idea of improving the solutions returned by the simplest version of the algorithm (depth-1 QAOA) using a form of postselection that can be efficiently simulated by state preparation. We derive theoretical upper and lower bounds showing that a constant (though small) increase of the fraction of satisfied edges is indeed achievable. Numerical experiments on large problem instances (beyond classical simulatability) complement and support our bounds. We also consider a distinct technique: local updates, which can be applied not only to QAOA but any optimization algorithm. In the case of QAOA, the resulting improvement can be sharply quantified theoretically for large problem instances and in absence of postselection. Combining postselection and local updates, the theory is no longer tractable but numerical evidence suggests that improvements from both methods can be combined.

Citations (1)

Summary

We haven't generated a summary for this paper yet.