Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rare-Event Chance-Constrained Flight Control Optimization Using Surrogate-Based Subset Simulation (2011.05361v2)

Published 10 Nov 2020 in eess.SY and cs.SY

Abstract: A probabilistic performance-oriented control design optimization approach is introduced for flight systems. Aiming at estimating rare-event probabilities accurately and efficiently, subset simulation is combined with surrogate modeling techniques to improve efficiency. At each level of subset simulation, the samples that are close to the failure domain are employed to construct a surrogate model. The existing surrogate is then refined progressively. In return, seed and sample candidates are screened by the updated surrogate, thus saving a large number of calls to the true model and reducing the computational expense. Afterwards, control parameters are optimized under rare-event chance constraints to directly guarantee system performance. Simulations are conducted on an aircraft longitudinal model subject to parametric uncertainties to demonstrate the efficiency and accuracy of this method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.