Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grounding Implicit Goal Description for Robot Indoor Navigation Via Recursive Belief Update (2011.05319v1)

Published 10 Nov 2020 in cs.RO

Abstract: Natural language-based robotic navigation remains a challenging problem due to the human knowledge of navigation constraints, and destination is not directly compatible with the robot knowledge base. In this paper, we aim to translate natural destination commands into high-level robot navigation plans given a map of interest. We identify grammatically associated segments of destination description and recursively apply each of them to update a belief distribution of an area over the given map.We train a destination grounding model using a dataset of single-step belief update for precise, proximity, and directional modifier types. We demonstrate our method on real-world navigation task in an office consisting of 80 areas. Offline experimental results show that our method can directly extract goal destination from unheard, long, and composite text commands asked by humans. This enables users to specify their destination goals for the robot in general and natural form. Hardware experiment results also show that the designed model brings much convenience for specifying a navigation goal to a service robot.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Chen (310 papers)
  2. Jinxin Zhao (3 papers)
  3. Liangjun Zhang (51 papers)

Summary

We haven't generated a summary for this paper yet.