Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speed-Robust Scheduling -- Sand, Bricks, and Rocks (2011.05181v2)

Published 10 Nov 2020 in cs.DS

Abstract: The speed-robust scheduling problem is a two-stage problem where given $m$ machines, jobs must be grouped into at most $m$ bags while the processing speeds of the given $m$ machines are unknown. After the speeds are revealed, the grouped jobs must be assigned to the machines without being separated. To evaluate the performance of algorithms, we determine upper bounds on the worst-case ratio of the algorithm's makespan and the optimal makespan given full information. We refer to this ratio as the robustness factor. We give an algorithm with a robustness factor $2-1/m$ for the most general setting and improve this to $1.8$ for equal-size jobs. For the special case of infinitesimal jobs, we give an algorithm with an optimal robustness factor equal to $e/(e-1) \approx 1.58$. The particular machine environment in which all machines have either speed $0$ or $1$ was studied before by Stein and Zhong (SODA 2019). For this setting, we provide an algorithm for scheduling infinitesimal jobs with an optimal robustness factor of $(1+\sqrt{2})/2 \approx 1.207$. It lays the foundation for an algorithm matching the lower bound of $4/3$ for equal-size jobs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.