Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Stochastic Consensus Optimization with Momentum for Nonconvex Nonsmooth Problems (2011.05082v1)

Published 10 Nov 2020 in math.OC and cs.LG

Abstract: While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new (stochastic) distributed algorithm with Nesterov momentum for accelerated optimization of non-convex and non-smooth problems. Theoretically, we show that the proposed algorithm can achieve an $\epsilon$-stationary solution under a constant step size with $\mathcal{O}(1/\epsilon2)$ computation complexity and $\mathcal{O}(1/\epsilon)$ communication complexity. When compared to the existing gradient tracking based methods, the proposed algorithm has the same order of computation complexity but lower order of communication complexity. To the best of our knowledge, the presented result is the first stochastic algorithm with the $\mathcal{O}(1/\epsilon)$ communication complexity for non-convex and non-smooth problems. Numerical experiments for a distributed non-convex regression problem and a deep neural network based classification problem are presented to illustrate the effectiveness of the proposed algorithms.

Citations (31)

Summary

We haven't generated a summary for this paper yet.