Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying Machine Learning to Crowd-sourced Data from Earthquake Detective (2011.04740v2)

Published 5 Nov 2020 in physics.geo-ph and cs.LG

Abstract: Dynamically triggered earthquakes and tremor generate two classes of weak seismic signals whose detection, identification, and authentication traditionally call for laborious analyses. Machine learning (ML) has grown in recent years to be a powerful efficiency-boosting tool in geophysical analyses, including the detection of specific signals in time series. However, detecting weak signals that are buried in noise challenges ML algorithms, in part because ubiquitous training data is not always available. Under these circumstances, ML can be as ineffective as human experts are inefficient. At this intersection of effectiveness and efficiency, we leverage a third tool that has grown in popularity over the past decade: Citizen science. Citizen science project Earthquake Detective leverages the eyes and ears of volunteers to detect and classify weak signals in seismograms from potentially dynamically triggered (PDT) events. Here, we present the Earthquake Detective data set - A crowd-sourced set of labels on PDT earthquakes and tremor. We apply Machine Learning to classify these PDT seismic events and explore the challenges faced in segregating and classifying such weak signals. We confirm that with an image- and wavelet-based algorithm, machine learning can detect signals from small earthquakes. In addition, we report that our ML algorithm can also detect signals from PDT tremor, which has not been previously demonstrated. The citizen science data set of classifications and ML code are available online.

Summary

We haven't generated a summary for this paper yet.