Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classical many-body chaos with and without quasiparticles (2011.04700v1)

Published 9 Nov 2020 in cond-mat.stat-mech

Abstract: We study correlations, transport and chaos in a Heisenberg magnet as a classical model many-body system. By varying temperature and dimensionality, we can tune between settings with and without symmetry breaking and accompanying collective modes or quasiparticles. We analyse both conventional and out-of-time-ordered spin correlators (decorrelators') to track the spreading of a spatiotemporally localised perturbation -- the wingbeat of the butterfly -- as well as transport coefficients and Lyapunov exponents. We identify a number of qualitatively different regimes. Trivially, at $T=0$, there is no dynamics at all. In the limit of low temperature, $T=0^+$, integrability emerges, with infinitely long-lived magnons; here the wavepacket created by the perturbation propagates ballistically, yielding a lightcone at the spin wave velocity which thus subsumes the butterfly velocity; inside the lightcone, a pattern characteristic of the free spin wave spectrum is visible at short times. On top of this, residual interactionslead to spin wave lifetimes which, while divergent in this limit, remain finite at any nonzero $T$. At the longest times, this leads to astandard' chaotic regime; for this regime, we show that the Lyapunov exponent is simply proportional to the inverse spin-wave lifetime. Visibly strikingly, between this and the `short-time' integrable regimes, a scarred regime emerges: here, the decorrelator is spatiotemporally highly non-uniform, being dominated by rare and random scattering events seeding secondary lightcones. As the spin correlation length decreases with increasing $T$, the distinction between these regimes disappears and at high temperature the previously studied chaotic paramagnetic regime emerges. For this, we elucidate how, somewhat counterintuitively, the ballistic butterfly velocity arises from a diffusive spin dynamics.

Summary

We haven't generated a summary for this paper yet.