2000 character limit reached
Masked Face Image Classification with Sparse Representation based on Majority Voting Mechanism (2011.04556v1)
Published 9 Nov 2020 in cs.CV
Abstract: Sparse approximation is the problem to find the sparsest linear combination for a signal from a redundant dictionary, which is widely applied in signal processing and compressed sensing. In this project, I manage to implement the Orthogonal Matching Pursuit (OMP) algorithm and Sparse Representation-based Classification (SRC) algorithm, then use them to finish the task of masked image classification with majority voting. Here the experiment was token on the AR data-set, and the result shows the superiority of OMP algorithm combined with SRC algorithm over masked face image classification with an accuracy of 98.4%.