Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bangla Text Classification using Transformers (2011.04446v1)

Published 9 Nov 2020 in cs.CL and cs.LG

Abstract: Text classification has been one of the earliest problems in NLP. Over time the scope of application areas has broadened and the difficulty of dealing with new areas (e.g., noisy social media content) has increased. The problem-solving strategy switched from classical machine learning to deep learning algorithms. One of the recent deep neural network architecture is the Transformer. Models designed with this type of network and its variants recently showed their success in many downstream natural language processing tasks, especially for resource-rich languages, e.g., English. However, these models have not been explored fully for Bangla text classification tasks. In this work, we fine-tune multilingual transformer models for Bangla text classification tasks in different domains, including sentiment analysis, emotion detection, news categorization, and authorship attribution. We obtain the state of the art results on six benchmark datasets, improving upon the previous results by 5-29% accuracy across different tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tanvirul Alam (5 papers)
  2. Akib Khan (3 papers)
  3. Firoj Alam (75 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.