Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MatRec: Matrix Factorization for Highly Skewed Dataset (2011.04395v1)

Published 9 Nov 2020 in cs.IR and cs.AI

Abstract: Recommender systems is one of the most successful AI technologies applied in the internet cooperations. Popular internet products such as TikTok, Amazon, and YouTube have all integrated recommender systems as their core product feature. Although recommender systems have received great success, it is well known for highly skewed datasets, engineers and researchers need to adjust their methods to tackle the specific problem to yield good results. Inability to deal with highly skewed dataset usually generates hard computational problems for big data clusters and unsatisfactory results for customers. In this paper, we propose a new algorithm solving the problem in the framework of matrix factorization. We model the data skewness factors in the theoretic modeling of the approach with easy to interpret and easy to implement formulas. We prove in experiments our method generates comparably favorite results with popular recommender system algorithms such as Learning to Rank , Alternating Least Squares and Deep Matrix Factorization.

Citations (20)

Summary

We haven't generated a summary for this paper yet.