Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Exploration of Training Loss Level-Sets in Deep Neural Networks (2011.04189v3)

Published 9 Nov 2020 in cs.LG and cs.NE

Abstract: We present a computational method for empirically characterizing the training loss level-sets of deep neural networks. Our method numerically constructs a path in parameter space that is constrained to a set with a fixed near-zero training loss. By measuring regularization functions and test loss at different points within this path, we examine how different points in the parameter space with the same fixed training loss compare in terms of generalization ability. We also compare this method for finding regularized points with the more typical method, that uses objective functions which are weighted sums of training loss and regularization terms. We apply dimensionality reduction to the traversed paths in order to visualize the loss level sets in a well-regularized region of parameter space. Our results provide new information about the loss landscape of deep neural networks, as well as a new strategy for reducing test loss.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Naveed Tahir (1 paper)
  2. Garrett E. Katz (4 papers)

Summary

We haven't generated a summary for this paper yet.