Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completely bounded homomorphisms of the Fourier algebra revisited (2011.03962v2)

Published 8 Nov 2020 in math.FA and math.GR

Abstract: Let $A(G)$ and $B(H)$ be the Fourier and Fourier-Stieltjes algebras of locally compact groups $G$ and $H$, respectively. Ilie and Spronk have shown that continuous piecewise affine maps $\alpha: Y \subseteq H\rightarrow G$ induce completely bounded homomorphisms $\Phi:A(G)\rightarrow B(H)$, and that when $G$ is amenable, every completely bounded homomorphism arises in this way. This generalised work of Cohen in the abelian setting. We believe that there is a gap in a key lemma of the existing argument, which we do not see how to repair. We present here a different strategy to show the result, which instead of using topological arguments, is more combinatorial and makes use of measure theoretic ideas, following more closely the original ideas of Cohen.

Summary

We haven't generated a summary for this paper yet.