Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On members of Lucas sequences which are either products of factorials or product of middle binomial coefficients and Catalan numbers (2011.03326v1)

Published 5 Nov 2020 in math.NT

Abstract: Let ${U_n}{n\geq 0}$ be a Lucas sequence. Then the equation $$|U_n|=m_1!m_2!\cdots m_k!$$ with $1<m_1\leq m_2\leq \cdots\leq m_k$ implies $n\in {1,2, 3, 4, 6, 8, 12}$. Further the equation $$|U_n|=D{m_1}D_{m_2}\cdots D_{m_k}, \qquad D_{m_i}\in {B_{m_i}, C_{m_i}}$$ with $1<m_1\leq m_2\leq \cdots\leq m_k$ implies $n\in {1,2, 3, 4, 6, 8, 12, 16}$. Here $B_m$ is the middle binomial coefficient $\binom{2m}{m}$ and $C_m$ is the Catalan number $\frac{1}{m+1}\binom{2m}{m}$.

Summary

We haven't generated a summary for this paper yet.