Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedSL: Federated Split Learning on Distributed Sequential Data in Recurrent Neural Networks (2011.03180v3)

Published 6 Nov 2020 in cs.LG and cs.DC

Abstract: Federated Learning (FL) and Split Learning (SL) are privacy-preserving Machine-Learning (ML) techniques that enable training ML models over data distributed among clients without requiring direct access to their raw data. Existing FL and SL approaches work on horizontally or vertically partitioned data and cannot handle sequentially partitioned data where segments of multiple-segment sequential data are distributed across clients. In this paper, we propose a novel federated split learning framework, FedSL, to train models on distributed sequential data. The most common ML models to train on sequential data are Recurrent Neural Networks (RNNs). Since the proposed framework is privacy-preserving, segments of multiple-segment sequential data cannot be shared between clients or between clients and server. To circumvent this limitation, we propose a novel SL approach tailored for RNNs. A RNN is split into sub-networks, and each sub-network is trained on one client containing single segments of multiple-segment training sequences. During local training, the sub-networks on different clients communicate with each other to capture latent dependencies between consecutive segments of multiple-segment sequential data on different clients, but without sharing raw data or complete model parameters. After training local sub-networks with local sequential data segments, all clients send their sub-networks to a federated server where sub-networks are aggregated to generate a global model. The experimental results on simulated and real-world datasets demonstrate that the proposed method successfully trains models on distributed sequential data, while preserving privacy, and outperforms previous FL and centralized learning approaches in terms of achieving higher accuracy in fewer communication rounds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ali Abedi (45 papers)
  2. Shehroz S. Khan (42 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.