Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Forecasting (2011.03153v4)

Published 6 Nov 2020 in econ.EM

Abstract: We use a decision-theoretic framework to study the problem of forecasting discrete outcomes when the forecaster is unable to discriminate among a set of plausible forecast distributions because of partial identification or concerns about model misspecification or structural breaks. We derive "robust" forecasts which minimize maximum risk or regret over the set of forecast distributions. We show that for a large class of models including semiparametric panel data models for dynamic discrete choice, the robust forecasts depend in a natural way on a small number of convex optimization problems which can be simplified using duality methods. Finally, we derive "efficient robust" forecasts to deal with the problem of first having to estimate the set of forecast distributions and develop a suitable asymptotic efficiency theory. Forecasts obtained by replacing nuisance parameters that characterize the set of forecast distributions with efficient first-stage estimators can be strictly dominated by our efficient robust forecasts.

Summary

We haven't generated a summary for this paper yet.