Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum randomized encoding, verification of quantum computing, no-cloning, and blind quantum computing (2011.03141v2)

Published 5 Nov 2020 in quant-ph, cs.CC, and cs.CR

Abstract: Randomized encoding is a powerful cryptographic primitive with various applications such as secure multiparty computation, verifiable computation, parallel cryptography, and complexity lower-bounds. Intuitively, randomized encoding $\hat{f}$ of a function $f$ is another function such that $f(x)$ can be recovered from $\hat{f}(x)$, and nothing except for $f(x)$ is leaked from $\hat{f}(x)$. Its quantum version, quantum randomized encoding, has been introduced recently [Brakerski and Yuen, arXiv:2006.01085]. Intuitively, quantum randomized encoding $\hat{F}$ of a quantum operation $F$ is another quantum operation such that, for any quantum state $\rho$, $F(\rho)$ can be recovered from $\hat{F}(\rho)$, and nothing except for $F(\rho)$ is leaked from $\hat{F}(\rho)$. In this paper, we show that if quantum randomized encoding of BB84 state generations is possible with an encoding operation $E$, then a two-round verification of quantum computing is possible with a classical verifier who can additionally do the operation $E$. One of the most important goals in the field of the verification of quantum computing is to construct a verification protocol with a verifier as classical as possible. This result therefore demonstrates a potential application of quantum randomized encoding to the verification of quantum computing: if we can find a good quantum randomized encoding (in terms of the encoding complexity), then we can construct a good verification protocol of quantum computing. We, however, also show that too good quantum randomized encoding is impossible: if quantum randomized encoding with a classical encoding operation is possible, then the no-cloning is violated. We finally consider a natural modification of blind quantum computing protocols in such a way that the server gets the output like quantum randomized encoding. We show that the modified protocol is not secure.

Summary

We haven't generated a summary for this paper yet.