Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monadic second-order logic and the domino problem on self-similar graphs (2011.02735v1)

Published 5 Nov 2020 in math.GR, cs.LO, and math.LO

Abstract: We consider the domino problem on Schreier graphs of self-similar groups, and more generally their monadic second-order logic. On the one hand, we prove that if the group is bounded then the graph's monadic second-order logic is decidable. This covers, for example, the Sierpi\'nski gasket graphs and the Schreier graphs of the Basilica group. On the other hand, we already prove undecidability of the domino problem for a class of self-similar groups, answering a question by Barbieri and Sablik, and some examples including one of linear growth.

Citations (3)

Summary

We haven't generated a summary for this paper yet.