Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical-cum-Statistical Approach to Power-Performance Characterization of Concurrent GPU Kernels (2011.02368v2)

Published 4 Nov 2020 in cs.DC, cs.AR, and cs.GR

Abstract: Growing deployment of power and energy efficient throughput accelerators (GPU) in data centers demands enhancement of power-performance co-optimization capabilities of GPUs. Realization of exascale computing using accelerators requires further improvements in power efficiency. With hardwired kernel concurrency enablement in accelerators, inter- and intra-workload simultaneous kernels computation predicts increased throughput at lower energy budget. To improve Performance-per-Watt metric of the architectures, a systematic empirical study of real-world throughput workloads (with concurrent kernel execution) is required. To this end, we propose a multi-kernel throughput workload generation framework that will facilitate aggressive energy and performance management of exascale data centers and will stimulate synergistic power-performance co-optimization of throughput architectures. Also, we demonstrate a multi-kernel throughput benchmark suite based on the framework that encapsulates symmetric, asymmetric and co-existing (often appears together) kernel based workloads. On average, our analysis reveals that spatial and temporal concurrency within kernel execution in throughput architectures saves energy consumption by 32%, 26% and 33% in GTX470, Tesla M2050 and Tesla K20 across 12 benchmarks. Concurrency and enhanced utilization are often correlated but do not imply significant deviation in power dissipation. Diversity analysis of proposed multi-kernels confirms characteristic variation and power-profile diversity within the suite. Besides, we explain several findings regarding power-performance co-optimization of concurrent throughput workloads.

Summary

We haven't generated a summary for this paper yet.