Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods (2011.02196v3)

Published 4 Nov 2020 in math.OC

Abstract: The linear quadratic regulator problem is central in optimal control and was investigated since the very beginning of control theory. Nevertheless, when it includes affine state constraints, it remains very challenging from the classical maximum principle perspective. In this study we present how matrix-valued reproducing kernels allow for an alternative viewpoint. We show that the quadratic objective paired with the linear dynamics encode the relevant kernel, defining a Hilbert space of controlled trajectories. Drawing upon kernel formalism, we introduce a strengthened continuous-time convex optimization problem which can be tackled exactly with finite dimensional solvers, and which solution is interior to the constraints. When refining a time-discretization grid, this solution can be made arbitrarily close to the solution of the state-constrained Linear Quadratic Regulator. We illustrate the implementation of this method on a path-planning problem.

Summary

We haven't generated a summary for this paper yet.