Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Zero-shot Multilingual Spoken Language Translation with Language-Specific Encoders and Decoders (2011.01097v2)

Published 2 Nov 2020 in cs.CL

Abstract: Current end-to-end approaches to Spoken Language Translation (SLT) rely on limited training resources, especially for multilingual settings. On the other hand, Multilingual Neural Machine Translation (MultiNMT) approaches rely on higher-quality and more massive data sets. Our proposed method extends a MultiNMT architecture based on language-specific encoders-decoders to the task of Multilingual SLT (MultiSLT). Our method entirely eliminates the dependency from MultiSLT data and it is able to translate while training only on ASR and MultiNMT data. Our experiments on four different languages show that coupling the speech encoder to the MultiNMT architecture produces similar quality translations compared to a bilingual baseline ($\pm 0.2$ BLEU) while effectively allowing for zero-shot MultiSLT. Additionally, we propose using an Adapter module for coupling the speech inputs. This Adapter module produces consistent improvements up to +6 BLEU points on the proposed architecture and +1 BLEU point on the end-to-end baseline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Carlos Escolano (20 papers)
  2. Marta R. Costa-jussà (73 papers)
  3. José A. R. Fonollosa (23 papers)
  4. Carlos Segura (14 papers)
Citations (17)