Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregating Incomplete and Noisy Rankings (2011.00810v2)

Published 2 Nov 2020 in cs.LG and stat.ML

Abstract: We consider the problem of learning the true ordering of a set of alternatives from largely incomplete and noisy rankings. We introduce a natural generalization of both the classical Mallows model of ranking distributions and the extensively studied model of noisy pairwise comparisons. Our selective Mallows model outputs a noisy ranking on any given subset of alternatives, based on an underlying Mallows distribution. Assuming a sequence of subsets where each pair of alternatives appears frequently enough, we obtain strong asymptotically tight upper and lower bounds on the sample complexity of learning the underlying complete ranking and the (identities and the) ranking of the top-k alternatives from selective Mallows rankings. Moreover, building on the work of (Braverman and Mossel, 2009), we show how to efficiently compute the maximum likelihood complete ranking from selective Mallows rankings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.