Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Biconnectivity Restoration in Multi-Robot Systems for Robust Communication Maintenance (2011.00685v3)

Published 2 Nov 2020 in cs.RO

Abstract: Maintaining a robust communication network plays an important role in the success of a multi-robot team jointly performing an optimization task. A key characteristic of a robust multi-robot system is the ability to repair the communication topology itself in the case of robot failure. In this paper, we focus on the Fast Biconnectivity Restoration (FBR) problem, which aims to repair a connected network to make it biconnected as fast as possible, where a biconnected network is a communication topology that cannot be disconnected by removing one node. We develop a Quadratically Constrained Program (QCP) formulation of the FBR problem, which provides a way to optimally solve the problem. We also propose an approximation algorithm for the FBR problem based on graph theory. By conducting empirical studies, we demonstrate that our proposed approximation algorithm performs close to the optimal while significantly outperforming the existing solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. W. Luo and K. Sycara, “Minimum k-connectivity maintenance for robust multi-robot systems,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 7370–7377.
  2. N. Atay and B. Bayazit, “Mobile wireless sensor network connectivity repair with k-redundancy,” in Algorithmic Foundation of Robotics VIII.   Springer, 2009, pp. 35–49.
  3. P. Basu and J. Redi, “Movement control algorithms for realization of fault-tolerant ad hoc robot networks,” IEEE network, vol. 18, no. 4, pp. 36–44, 2004.
  4. A. A. Abbasi, M. Younis, and K. Akkaya, “Movement-assisted connectivity restoration in wireless sensor and actor networks,” IEEE Transactions on parallel and distributed systems, vol. 20, no. 9, pp. 1366–1379, 2008.
  5. H. Liu, X. Chu, Y.-W. Leung, and R. Du, “Simple movement control algorithm for bi-connectivity in robotic sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 7, pp. 994–1005, 2010.
  6. S. Lee, M. Younis, and M. Lee, “Connectivity restoration in a partitioned wireless sensor network with assured fault tolerance,” Ad Hoc Networks, vol. 24, pp. 1–19, 2015.
  7. R. E. N. Moraes, C. C. Ribeiro, and C. Duhamel, “Optimal solutions for fault-tolerant topology control in wireless ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 5970–5981, 2009.
  8. K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM Journal on Computing, vol. 5, no. 4, pp. 653–665, 1976.
  9. G. N. Frederickson and J. Ja’Ja’, “Approximation algorithms for several graph augmentation problems,” SIAM Journal on Computing, vol. 10, no. 2, pp. 270–283, 1981.
  10. S. Khuller and R. Thurimella, “Approximation algorithms for graph augmentation,” Journal of algorithms, vol. 14, no. 2, pp. 214–225, 1993.
  11. L. Sabattini, N. Chopra, and C. Secchi, “Decentralized connectivity maintenance for cooperative control of mobile robotic systems,” The International Journal of Robotics Research, vol. 32, no. 12, pp. 1411–1423, 2013.
  12. P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, “A passivity-based decentralized strategy for generalized connectivity maintenance,” The International Journal of Robotics Research, vol. 32, no. 3, pp. 299–323, 2013.
  13. M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic connectivity control of mobile robot networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1525–1540, 2011.
  14. M. Minelli, J. Panerati, M. Kaufmann, C. Ghedini, G. Beltrame, and L. Sabattini, “Self-optimization of resilient topologies for fallible multi-robots,” Robotics and Auton. Systems, vol. 124, p. 103384, 2020.
  15. J. Panerati, M. Minelli, C. Ghedini, L. Meyer, M. Kaufmann, L. Sabattini, and G. Beltrame, “Robust connectivity maintenance for fallible robots,” Autonomous Robots, vol. 43, no. 3, pp. 769–787, 2019.
  16. A. Cornejo and N. Lynch, “Fault-tolerance through k-connectivity,” in Workshop on network science and systems issues in multi-robot autonomy: ICRA, vol. 2.   Citeseer, 2010, p. 2010.
  17. V. S. Varadharajan, D. St-Onge, B. Adams, and G. Beltrame, “Swarm relays: Distributed self-healing ground-and-air connectivity chains,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5347–5354, 2020.
  18. P. D. Hung, T. Q. Vinh, and T. D. Ngo, “Hierarchical distributed control for global network integrity preservation in multirobot systems,” IEEE transactions on cybernetics, vol. 50, no. 3, pp. 1278–1291, 2019.
  19. J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Concurrent control of mobility and communication in multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1248–1254, 2017.
  20. S. Wang, X. Mao, S.-J. Tang, X. Li, J. Zhao, and G. Dai, “On “movement-assisted connectivity restoration in wireless sensor and actor networks”,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 4, pp. 687–694, 2010.
  21. W. Luo, N. Chakraborty, and K. Sycara, “Minimally disruptive connectivity enhancement for resilient multi-robot teams,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 11 809–11 816.
  22. C. Ghedini, C. H. Ribeiro, and L. Sabattini, “A decentralized control strategy for resilient connectivity maintenance in multi-robot systems subject to failures,” in Distributed Autonomous Robotic Systems.   Springer, 2018, pp. 89–102.
  23. I. Kuzminykh, A. Snihurov, and A. Carlsson, “Testing of communication range in zigbee technology,” in 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM).   IEEE, 2017, pp. 133–136.
  24. V. Iordache, R. A. Gheorghiu, M. Minea, and A. C. Cormos, “Field testing of bluetooth and zigbee technologies for vehicle-to-infrastructure applications,” in 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).   IEEE, 2017, pp. 248–251.
  25. L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020. [Online]. Available: http://www.gurobi.com
  26. M. Ishat-E-Rabban, P. Tokekar, “Failure-resilient coverage maximization with multiple robots”, IEEE Robotics and Automation Letters, vol. 6(2), pp. 3894-3901, 2021.
  27. M. Rabban, M. Ali, M. Cheema, T. Hashem, “The Maximum Visibility Facility Selection Query in Spatial Databases”, 27th ACM Sigspatial International Conference on Advances in Geographic Information Systems, pp. 149–158, 2019.
  28. G. Shi, I.E. Rabban, L. Zhou, P. Tokekar, “Communication-aware multi-robot coordination with submodular maximization”, 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8955-8961). 2021.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com