Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using List Decoding to Improve the Finite-Length Performance of Sparse Regression Codes (2011.00224v2)

Published 31 Oct 2020 in cs.IT and math.IT

Abstract: We consider sparse superposition codes (SPARCs) over complex AWGN channels. Such codes can be efficiently decoded by an approximate message passing (AMP) decoder, whose performance can be predicted via so-called state evolution in the large-system limit. In this paper, we mainly focus on how to use concatenation of SPARCs and cyclic redundancy check (CRC) codes on the encoding side and use list decoding on the decoding side to improve the finite-length performance of the AMP decoder for SPARCs over complex AWGN channels. Simulation results show that such a concatenated coding scheme works much better than SPARCs with the original AMP decoder and results in a steep waterfall-like behavior in the bit-error rate performance curves. Furthermore, we apply our proposed concatenated coding scheme to spatially coupled SPARCs. Besides that, we also introduce a novel class of design matrices, i.e., matrices that describe the encoding process, based on circulant matrices derived from Frank or from Milewski sequences. This class of design matrices has comparable encoding and decoding computational complexity as well as very close performance with the commonly-used class of design matrices based on discrete Fourier transform (DFT) matrices, but gives us more degrees of freedom when designing SPARCs for various applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.