2000 character limit reached
Estimating Sparse Discrete Distributions Under Local Privacy and Communication Constraints (2011.00083v3)
Published 30 Oct 2020 in cs.IT, cs.CR, cs.DS, cs.LG, and math.IT
Abstract: We consider the problem of estimating sparse discrete distributions under local differential privacy (LDP) and communication constraints. We characterize the sample complexity for sparse estimation under LDP constraints up to a constant factor and the sample complexity under communication constraints up to a logarithmic factor. Our upper bounds under LDP are based on the Hadamard Response, a private coin scheme that requires only one bit of communication per user. Under communication constraints, we propose public coin schemes based on random hashing functions. Our tight lower bounds are based on the recently proposed method of chi squared contractions.