Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Neural Networks for Uplift Models (2011.00041v1)

Published 30 Oct 2020 in stat.ML and cs.LG

Abstract: Uplift is a particular case of individual treatment effect modeling. Such models deal with cause-and-effect inference for a specific factor, such as a marketing intervention. In practice, these models are built on customer data who purchased products or services to improve product marketing. Uplift is estimated using either i) conditional mean regression or ii) transformed outcome regression. Most existing approaches are adaptations of classification and regression trees for the uplift case. However, in practice, these conventional approaches are prone to overfitting. Here we propose a new method using neural networks. This representation allows to jointly optimize the difference in conditional means and the transformed outcome losses. As a consequence, the model not only estimates the uplift, but also ensures consistency in predicting the outcome. We focus on fully randomized experiments, which is the case of our data. We show our proposed method improves the state-of-the-art on synthetic and real data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.