Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Being Single Has Benefits. Instance Poisoning to Deceive Malware Classifiers (2010.16323v1)

Published 30 Oct 2020 in cs.CR and cs.LG

Abstract: The performance of a machine learning-based malware classifier depends on the large and updated training set used to induce its model. In order to maintain an up-to-date training set, there is a need to continuously collect benign and malicious files from a wide range of sources, providing an exploitable target to attackers. In this study, we show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier. The attacker's ultimate goal is to ensure that the model induced by the poisoned dataset will be unable to detect the attacker's malware yet capable of detecting other malware. As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger, reducing the detection rate from 99.23% to 0% depending on the amount of poisoning. We evaluate our attack on the EMBER dataset with a state-of-the-art classifier and malware samples from VirusTotal for end-to-end validation of our work. We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.

Citations (3)

Summary

We haven't generated a summary for this paper yet.