Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DistStat.jl: Towards Unified Programming for High-Performance Statistical Computing Environments in Julia (2010.16114v1)

Published 30 Oct 2020 in stat.CO and cs.MS

Abstract: The demand for high-performance computing (HPC) is ever-increasing for everyday statistical computing purposes. The downside is that we need to write specialized code for each HPC environment. CPU-level parallelization needs to be explicitly coded for effective use of multiple nodes in cluster supercomputing environments. Acceleration via graphics processing units (GPUs) requires to write kernel code. The Julia software package DistStat.jl implements a data structure for distributed arrays that work on both multi-node CPU clusters and multi-GPU environments transparently. This package paves a way to developing high-performance statistical software in various HPC environments simultaneously. As a demonstration of the transparency and scalability of the package, we provide applications to large-scale nonnegative matrix factorization, multidimensional scaling, and $\ell_1$-regularized Cox proportional hazards model on an 8-GPU workstation and a 720-CPU-core virtual cluster in Amazon Web Services (AWS) cloud. As a case in point, we analyze the on-set of type-2 diabetes from the UK Biobank with 400,000 subjects and 500,000 single nucleotide polymorphisms using the $\ell_1$-regularized Cox proportional hazards model. Fitting a half-million-variate regression model took less than 50 minutes on AWS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Seyoon Ko (7 papers)
  2. Hua Zhou (106 papers)
  3. Jin Zhou (45 papers)
  4. Joong-Ho Won (18 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.