Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quickest Bayesian and non-Bayesian detection of false data injection attack in remote state estimation (2010.15785v3)

Published 29 Oct 2020 in eess.SY and cs.SY

Abstract: In this paper, quickest detection of false data injection attack on remote state estimation is considered. A set of $N$ sensors make noisy linear observations of a discrete-time linear process with Gaussian noise, and report the observations to a remote estimator. The challenge is the presence of a few potentially malicious sensors which can start strategically manipulating their observations at a random time in order to skew the estimates. The quickest attack detection problem for a known {\em linear} attack scheme in the Bayesian setting with a Geometric prior on the attack initiation instant is posed as a constrained Markov decision process (MDP), in order to minimize the expected detection delay subject to a false alarm constraint, with the state involving the probability belief at the estimator that the system is under attack. State transition probabilities are derived in terms of system parameters, and the structure of the optimal policy is derived analytically. It turns out that the optimal policy amounts to checking whether the probability belief exceeds a threshold. Next, generalized CUSUM based attack detection algorithm is proposed for the non-Bayesian setting where the attacker chooses the attack initiation instant in a particularly adversarial manner. It turns out that computing the statistic for the generalised CUSUM test in this setting relies on the same techniques developed to compute the state transition probabilities of the MDP. Numerical results demonstrate significant performance gain under the proposed algorithms against competing algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.