Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech-Based Emotion Recognition using Neural Networks and Information Visualization (2010.15229v1)

Published 28 Oct 2020 in cs.HC and cs.LG

Abstract: Emotions recognition is commonly employed for health assessment. However, the typical metric for evaluation in therapy is based on patient-doctor appraisal. This process can fall into the issue of subjectivity, while also requiring healthcare professionals to deal with copious amounts of information. Thus, machine learning algorithms can be a useful tool for the classification of emotions. While several models have been developed in this domain, there is a lack of userfriendly representations of the emotion classification systems for therapy. We propose a tool which enables users to take speech samples and identify a range of emotions (happy, sad, angry, surprised, neutral, clam, disgust, and fear) from audio elements through a machine learning model. The dashboard is designed based on local therapists' needs for intuitive representations of speech data in order to gain insights and informative analyses of their sessions with their patients.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jumana Almahmoud (2 papers)
  2. Kruthika Kikkeri (1 paper)

Summary

We haven't generated a summary for this paper yet.