Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller (2010.15153v4)

Published 28 Oct 2020 in math.OC, cs.SY, and eess.SY

Abstract: In this technical note we analyse the performance improvement and optimality properties of the Learning Model Predictive Control (LMPC) strategy for linear deterministic systems. The LMPC framework is a policy iteration scheme where closed-loop trajectories are used to update the control policy for the next execution of the control task. We show that, when a Linear Independence Constraint Qualification (LICQ) condition holds, the LMPC scheme guarantees strict iterative performance improvement and optimality, meaning that the closed-loop cost evaluated over the entire task converges asymptotically to the optimal cost of the infinite-horizon control problem. Compared to previous works this sufficient LICQ condition can be easily checked, it holds for a larger class of systems and it can be used to adaptively select the prediction horizon of the controller, as demonstrated by a numerical example.

Citations (7)

Summary

We haven't generated a summary for this paper yet.