Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Short-Time Fourier Transform Parameters via Gradient Descent (2010.15049v2)

Published 28 Oct 2020 in eess.AS, cs.LG, and cs.SD

Abstract: The Short-Time Fourier Transform (STFT) has been a staple of signal processing, often being the first step for many audio tasks. A very familiar process when using the STFT is the search for the best STFT parameters, as they often have significant side effects if chosen poorly. These parameters are often defined in terms of an integer number of samples, which makes their optimization non-trivial. In this paper we show an approach that allows us to obtain a gradient for STFT parameters with respect to arbitrary cost functions, and thus enable the ability to employ gradient descent optimization of quantities like the STFT window length, or the STFT hop size. We do so for parameter values that stay constant throughout an input, but also for cases where these parameters have to dynamically change over time to accommodate varying signal characteristics.

Citations (12)

Summary

We haven't generated a summary for this paper yet.