Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

System Identification via Meta-Learning in Linear Time-Varying Environments (2010.14664v2)

Published 27 Oct 2020 in cs.LG, cs.SY, and eess.SY

Abstract: System identification is a fundamental problem in reinforcement learning, control theory and signal processing, and the non-asymptotic analysis of the corresponding sample complexity is challenging and elusive, even for linear time-varying (LTV) systems. To tackle this challenge, we develop an episodic block model for the LTV system where the model parameters remain constant within each block but change from block to block. Based on the observation that the model parameters across different blocks are related, we treat each episodic block as a learning task and then run meta-learning over many blocks for system identification, using two steps, namely offline meta-learning and online adaptation. We carry out a comprehensive non-asymptotic analysis of the performance of meta-learning based system identification. To deal with the technical challenges rooted in the sample correlation and small sample sizes in each block, we devise a new two-scale martingale small-ball approach for offline meta-learning, for arbitrary model correlation structure across blocks. We then quantify the finite time error of online adaptation by leveraging recent advances in linear stochastic approximation with correlated samples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.