Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized rainbow Turán numbers of odd cycles (2010.14609v3)

Published 27 Oct 2020 in math.CO

Abstract: Given graphs $F$ and $H$, the generalized rainbow Tur\'an number $\text{ex}(n,F,\text{rainbow-}H)$ is the maximum number of copies of $F$ in an $n$-vertex graph with a proper edge-coloring that contains no rainbow copy of $H$. B. Janzer determined the order of magnitude of $\text{ex}(n,C_s,\text{rainbow-}C_t)$ for all $s\geq 4$ and $t\geq 3$, and a recent result of O. Janzer implied that $\text{ex}(n,C_3,\text{rainbow-}C_{2k})=O(n{1+1/k})$. We prove the corresponding upper bound for the remaining cases, showing that $\text{ex}(n,C_3,\text{rainbow-}C_{2k+1})=O(n{1+1/k})$. This matches the known lower bound for $k$ even and is conjectured to be tight for $k$ odd.

Summary

We haven't generated a summary for this paper yet.