Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic echo cancellation with the dual-signal transformation LSTM network (2010.14337v2)

Published 27 Oct 2020 in eess.AS

Abstract: This paper applies the dual-signal transformation LSTM network (DTLN) to the task of real-time acoustic echo cancellation (AEC). The DTLN combines a short-time Fourier transformation and a learned feature representation in a stacked network approach, which enables robust information processing in the time-frequency and in the time domain, which also includes phase information. The model is only trained on 60~h of real and synthetic echo scenarios. The training setup includes multi-lingual speech, data augmentation, additional noise and reverberation to create a model that should generalize well to a large variety of real-world conditions. The DTLN approach produces state-of-the-art performance on clean and noisy echo conditions reducing acoustic echo and additional noise robustly. The method outperforms the AEC-Challenge baseline by 0.30 in terms of Mean Opinion Score (MOS).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nils L. Westhausen (8 papers)
  2. Bernd T. Meyer (13 papers)
Citations (55)

Summary

We haven't generated a summary for this paper yet.